Generate Random Numbers in Python
Complete code tutorial with examples and best practices
[ Code Example - Quick Summary ]
Language: Python
What: Generate random numbers in Python using the <code>random</code> module for general purposes or the <code>secrets</code> module for cryptographically secure random numbers.
Try it: Use our interactive Numbers generator or integrate this code into your Python application.
Generate random numbers in Python using the random module for general purposes or the secrets module for cryptographically secure random numbers.
Looking for other languages? Check our code examples in
PHP
,
JavaScript
,
Java
,
C#
,
C++
,
Ruby
and
Go
or use our interactive web generator.
Python Code Example
import random
import secrets
# Generate a single random number between 1 and 100
random_number = random.randint(1, 100)
print(random_number) # Example output: 42
# Generate multiple random numbers
numbers = [random.randint(1, 100) for _ in range(10)]
print(numbers)
# Example output: [23, 7, 91, 45, 12, 68, 3, 89, 54, 31]
# Generate cryptographically secure random number
secure_number = secrets.randbelow(100) + 1 # 1 to 100
print(secure_number) # Example: 67
# Random float between 0 and 100
random_float = random.uniform(0, 100)
print(f"{random_float:.2f}") # Example: 42.17
# Using NumPy for array generation
import numpy as np
numpy_numbers = np.random.randint(1, 101, size=10)
print(numpy_numbers)
# Example output: [23 7 91 45 12 68 3 89 54 31]
[EXPLANATION]
random.randint(a, b) returns a random integer between a and b (both inclusive). The secrets module provides cryptographically secure random numbers suitable for security-sensitive applications. For large-scale numerical work, use NumPy's numpy.random module.
Expected Output
42 [23, 7, 91, 45, 12, 68, 3, 89, 54, 31] 67 42.17 [23 7 91 45 12 68 3 89 54 31]
Common Use Cases
- Machine learning data shuffling and train/test splits
- Monte Carlo simulations and statistical modeling
- Random sampling for data analysis
- Game development and procedural generation
- Cryptographic token generation with secrets module
- Scientific computing with NumPy arrays
Important Notes
-
Import
randommodule:import random -
Use
secretsfor password, token, or key generation - NumPy is faster for generating large arrays of random numbers
-
random.seed()sets seed for reproducible results
Try Our Interactive Generator
Don't want to write code? Use our free web-based Numbers generator with instant results.
TRY NUMBERS GENERATOR →Other Programming Languages
View Numbers generation code examples in PHP
View Numbers generation code examples in JavaScript
View Numbers generation code examples in Java
View Numbers generation code examples in C#
View Numbers generation code examples in C++
View Numbers generation code examples in Ruby
View Numbers generation code examples in Go